Linear Algebra exercises.

  1. What’s eigenvalues of a n\times n matrix A=\begin{pmatrix} 1 & c & c & \dots & c\\ c & 1 & c & \dots & c\\ c & \vdots &\vdots && \vdots \\ \vdots &\vdots & & 1&c\\ c&c&c\dots&c&1\end{pmatrix} ?

Solution 1: Notice that A=c J+(1-c)I, where I,J are identity and ones matrix respectively. Assume v is an eigen-vector associated with an eigen-value \lambda, then

\begin{aligned}  &&cJv+(1-c)Iv=\lambda v\\  &\implies& c|v|\overset{\rightarrow}{1}=(\lambda+c-1) v.  \end{aligned}

Therefore,  v=\overset{\rightarrow}{1} , when  c|v|=(\lambda+c-1), i.e., \lambda_1=1+(n-1)c.

Otherwise, |v|=0 when \lambda_{2,\dots,n}=1-c, this is a n-1 dimension subspace \text{span}\{\begin{pmatrix} 1\\,-1\\, 0\\, \vdots,\\0\end{pmatrix},  \begin{pmatrix} 1\\,0\\, -1\\, \vdots,\\0\end{pmatrix},  \dots,  \begin{pmatrix} 1\\,0\\, 0\\, \vdots,\\-1\end{pmatrix}\}.

 

Solution 2: Matrix Determinant lemma (wikipedia: https://en.wikipedia.org/wiki/Matrix_determinant_lemma#Proof)

Statement: \text{det} (A+uv^T)=(1+v^TA^{-1}u)\text{det}(A), where A is an invertible matrix, u,v\in \mathbb{R}^{n,1}.

Let’s denote A=(1-c-\lambda)I_{n,n}, and u,v=\sqrt c \overset{\rightarrow}{1}_{n,1}, we can solve the eigenvalue from the corresponding polynomial

\begin{aligned}  (1+\frac{c}{1-c-\lambda}\cdot n)(1-c-\lambda)^n=(1-\lambda+(n-1)c)(1-c-\lambda)^{n-1}  \end{aligned}.

Therefore, the eigenvalues \lambda_1=1+(n-1)c, \lambda_{2,\dots,n}=1-c.